Detection on sarcasm using machine learning classifiers and rule based approach
نویسندگان
چکیده
منابع مشابه
Sarcasm Detection: Beyond Machine Learning Algorithms
Noise in online networks especially knowledge networks such as Quora, Yahoo! Q&A, reddit can be attributed to jokes, redundancy, insults, sarcasm. As the size of the content on these websites grows in a manner not possible to be monitored manually, there is a need to automatically detect the undesired text to increase the signal (useful content) to noise ratio. Popular machine learning algorith...
متن کاملBootstrapping Supervised Machine-learning Polarity Classifiers with Rule-based Classification
In this paper, we explore the effectiveness of bootstrapping supervised machine-learning polarity classifiers using the output of domain-independent rule-based classifiers. The benefit of this method is that no labeled training data are required. Still, this method allows to capture in-domain knowledge by training the supervised classifier on in-domain features, such as bag of words. We investi...
متن کاملUsing machine learning to improve rule-based machine translation
We present an experiment of using transformation-based learning for improving translation quality of a rule-based machine translation system by means of post-processing. Transformation rules are learned based on a parallel corpus of machine translation output and a human-corrected version of the output. The experiment resulted in a significant increase in translation quality of 0.8 measured usi...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملSMS Spam Detection using Machine Learning Approach
Over recent years, as the popularity of mobile phone devices has increased, Short Message Service (SMS) has grown into a multi-billion dollars industry. At the same time, reduction in the cost of messaging services has resulted in growth in unsolicited commercial advertisements (spams) being sent to mobile phones. In parts of Asia, up to 30% of text messages were spam in 2012. Lack of real data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/1055/1/012105